精准农业决策
农业大数据帮助农业精准决策,通过各个方面的农业信息制定出一整套有可实施性的精准管理措施。在大数据处理分析技术出现之前,专家系统、作物模拟模型、作物生产决策支持系统是主要的生产决策技术。大数据处理分析技术可以集成作物自身生长发育状况以及作物生长环境中的气候、土壤、生物等数据,同时综合考虑经济、环境、可持续发展的指标。这可以弥补专家系统、模拟模型在多结构、高密度数据处理方面的不足,为农业生产决策者提供更加精准、实时、高效的农业决策。
农业资源管理
运用遥感(RS)技术感知电子地图中的实地信息(土质、作物),全面掌握农业种植用地的范围,实时了解区域内土壤条件、大气环境等综合信息并通过对信息的差异性分析将种植区域划分为不同的管理区域,有针对性地进行规划,实现种植业农业资源的实时查询、分析、决策功能。
农作物生产管理
整合传统统计数据及农业资源管理信息,对农场不同地块的农作物进行有针对性的种植管理。
对种植影响因素差异性较大的不同区域定量获取影响作物生长的环境因素(如土壤肥力、含水量、苗情、病虫害等)信息,分析影响区块产量差异的原因,采取技术上可行、经济上有效的耕作措施,区别对待,按需实施的“精准农业”。
农作物监测、估产
利用遥感(RS)技术监控农作物长势,根据需要及时采取有效措施,并根据各种数据的综合分析较准确地预估农作物产量及采收信息。在大数据的基础上,根据数据处理平台的分析处理,使农情监测系统更加完善,给农情监测工作带来新的机遇。首先是自然灾害监测,通过分析收集的气象数据,结合气象模拟、土地分析、植物根部情况分析等要素,增强自然灾害的预测预报准确率和改进灾害评估方法,提高预测的准确性。这种通过大数据分析来监测自然灾害的方法在国内虽然还未开始使用,但是在国外已有先例。
农产品质量安全管理
整合产地环境、生产档案、检测数据形成农产品质量安全溯源数据。在农产品质量监测方面,大数据的技术给农产品信息的全面收集提供了技术基础,使农产品质量能够进行全方位比对,增加农产品质量监测的准确性。由于大数据处理技术的实时性,也使得农产品质量在出现问题时,能够及时防止影响的范围扩大,从而使农产品质量预警机制更加及时高效。
农产品市场监测
农产品市场监测有助于现代农业稳定发展。大数据时代的来临,为农产品市场监测预警工作提供了海量的数据支撑,因此会推动农产品监测预警工作更加地标准化、精确化。由于数据获取技术更加快捷,所以农产品市场信息的流动会大大加快,从而减弱不同地域的市场信息不同步产生的市场风险。同时,大数据分析技术更加注重全面分析而不是抽样分析,因此农产品市场监测预警更加精准。
农业综合信息服务
农业综合信息服务是指按照“平台上移,服务下延”的思路,集成与整合各分散的信息资源与系统,在全国范围实现信息资源的共享。
在农业综合信息服务中数据资源体量大、数据处理流程复杂、信息服务模式多样,需要实现海量农业信息化数据获取、传输、加工、服务一体化处理。因此,在实现信息服务按需分配以及处理大规模的资源数据中就必须利用大数据处理分析技术。农业大数据的应用研究为农村综合信息服务提供了必要的技术支撑。
农业作为中国的基础产业,面临着农产品需求不断增加、资源紧缺、气候变化导致灾害频发、生态安全脆弱、生物多样性持续下降等严峻挑战,因此,夯实以农业物联网、云计算技术为核心的农业信息化基础,提升以大数据为支撑的农业信息化服务,是开拓智慧农业新局面,实现农业现代化和信息化跨越式发展的重要力量。